3D reflection seismic imaging for open-pit mine planning and deep exploration in the Kevitsa Ni-Cu-PGE deposit, northern Finland

Author:

Malehmir Alireza1,Juhlin Christopher1,Wijns Chris2,Urosevic Milovan3,Valasti Petri2,Koivisto Emilia4

Affiliation:

1. Uppsala University, Department of Earth Sciences, Uppsala, Sweden..

2. First Quantum Minerals Ltd., Perth, Australia..

3. Curtin University, Department of Exploration Geophysics, Perth, Australia..

4. University of Helsinki, Department of Geosciences and Geography, Institute of Seismology, Helsinki, Finland..

Abstract

A 3D reflection seismic survey was conducted over an area of about [Formula: see text] at the Kevitsa Ni-Cu-PGE (platinum group elements) orebody, northern Finland, where open-pit mining started in mid-2012. The principal objective of the survey was to image major fault and fracture zones at depth that may have an impact on the mine stability and safety. Mine planning would then take into account the geometry of these zones at Kevitsa. Processing results, using conventional prestack DMO and poststack migration methods, show gently dipping and steeply dipping reflections from depths of approximately 2 km to as shallow as 150–200 m. Many of the reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Further correlation between the surface seismic data and VSP data suggests that numerous faults are present in the imaged volume based upon time shifts or phase changes along horizontal to gently dipping reflections. Some of these faults cross the planned open-pit mine at depths of about 300–500 m, and are therefore critical for geotechnical planning. In terms of in-pit and near-mine exploration, the magmatic layering internal to the intrusion controls the distribution of the bulk of economic mineralization. The ability to image this magmatic layering could therefore guide future drilling, particularly by constraining the presumed lateral extents of the resource area. Exploration also will target discrete reflectors that potentially represent higher-grade sulfide mineralization.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3