A deep learning benchmark for first break detection from hardrock seismic reflection data

Author:

St-Charles Pierre-Luc1ORCID,Rousseau Bruno2ORCID,Ghosn Joumana2ORCID,Bellefleur Gilles3ORCID,Schetselaar Ernst3ORCID

Affiliation:

1. Mila — Québec Artificial Intelligence Institute, Applied Machine Learning Research Team, Montréal, Québec, Canada. (corresponding author)

2. Mila — Québec Artificial Intelligence Institute, Applied Machine Learning Research Team, Montréal, Québec, Canada.

3. Geological Survey of Canada, Natural Resources Canada, Ottawa, Ontario, Canada.

Abstract

Deep learning techniques are used to tackle a variety of tasks related to seismic data processing and interpretation. Although many works have shown the benefits of deep learning, assessing the generalization capabilities of proposed methods for data acquired in different conditions and geologic environments remains challenging. This is especially true for applications in hardrock environments. The primary factors that impede the adoption of machine learning in geosciences include the lack of publicly available and labeled data sets and the use of inadequate evaluation methodologies. Because machine learning models are prone to overfit and underperform when the data used to train them are site specific, the applicability of these models on new survey data that could be considered “out-of-distribution” is rarely addressed. This is unfortunate, as evaluating predictive models in out-of-distribution settings can provide a good insight into their usefulness in real-world use cases. To tackle these issues, we develop a simple benchmarking methodology for first break picking to evaluate the transferability of deep learning models that are trained across different environments and acquisition conditions. For this, we consider a reflection seismic survey data set acquired at five distinct hardrock mining sites combined with annotations for first break picking. We train and evaluate a baseline deep learning solution based on a U-Net for future comparisons and discuss potential improvements to this approach.

Funder

Ministère de l’Économie, de l'Innovation et de l’Énergie - Québec

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Meta-Learning-Based Approach for Automatic First-Arrival Picking;IEEE Transactions on Geoscience and Remote Sensing;2024

2. UPNet: Uncertainty-Based Picking Deep Learning Network for Robust First Break Picking;IEEE Transactions on Geoscience and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3