Why 3D seismic data are an asset for exploration and mine planning? Velocity tomography of weakness zones in the Kevitsa Ni-Cu-PGE mine, northern Finland

Author:

Malehmir Alireza1ORCID,Tryggvason Ari1ORCID,Wijns Chris2,Koivisto Emilia3,Lindqvist Teemu3,Skyttä Pietari4,Montonen Markku5

Affiliation:

1. Uppsala University, Uppsala, Sweden..

2. First Quantum Minerals Ltd., Perth, Australia..

3. University of Helsinki, Helsinki, Finland..

4. University of Turku, Turku, Finland..

5. Boliden FinnEx Oy, Kevitsa, Finland..

Abstract

Kevitsa is a disseminated Ni-Cu-PGE (platinum group elements) ore body in northern Finland, hosted by an extremely high-velocity ([Formula: see text]) ultramafic intrusion. It is currently being mined at a depth of approximately 100 m with open-pit mining. The estimated mine life is 20 years, with the final pit reaching a depth of 500–600 m. Based on a series of 2D seismic surveys and given the expected mine life, a high-resolution 3D seismic survey was justified and conducted in the winter of 2010. We evaluate earlier 3D reflection data processing results and complement that by the results of 3D first-arrival traveltime tomography. The combined results provide insights on the nature of some of the reflectors within the intrusion. In particular, a major discontinuity, a weakness zone, is delineated in the tomography results on the northern side of the planned pit. Supported by the reflection data, we estimate the discontinuity, likely a thrust sheet, to extend down approximately 600 m and laterally 1000 m. The weakness zone terminates prominent internal reflectivity of the Kevitsa intrusion, and it is associated with the extent of the economic mineralization. Together with other weakness zones, a couple of which are also revealed by the tomography study, the discontinuity forms a major wedge block that influences the mine bench stability on the northern side of the open pit and likely will cause more issues during the extraction of the ore in this part of the mine. We argue that 3D seismic data should routinely be acquired prior to commencement of mining activities to maximize exploration efficiency at depth and also to optimize mining as it continues toward depth. Three-dimensional seismic data over mineral exploration areas are valuable and can be revisited for different purposes but are difficult to impossible to acquire after mining has commenced.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3