Interactive Multimedia Data Coscattering Point Imaging for Low Signal-to-Noise Ratio 3D Seismic Data Processing

Author:

Fei Jianbo1ORCID,Wang Yanchun1ORCID

Affiliation:

1. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

Abstract

In this paper, low signal-to-noise ratio 3D seismic data are processed by the method of coscattered point imaging, and the imaging method is analyzed in combination with interactive multimedia for 3D seismic data. The reconstruction is carried out using a convex set projection algorithm based on the curvilinear wave transform. The track set is extracted from the 3D data body and transformed into the common offset distance-center point tract set to achieve the reconstruction of seismic data in the common offset distance track set domain and through comparison. It is concluded that the reconstruction effect is better in the common. The reconstruction results are better in the common offset distance track set domain. To shorten the processing time and obtain better reconstruction results, this paper proposes the idea of direct reconstruction of frequency slices. Experiments on the actual seismic three-component wavefield based on velocity-type and acceleration-type three-component geophones are carried out to reveal the signal characteristics of the actual seismic wavefield under the mining space. Due to the limitation of the construction observation space and the particularity of the actual needs of mine detection, the application of the scattered wave imaging method in the mine must be based on the corresponding detection space and detection purpose. The implementation of this thesis improves the signal-to-noise ratio, resolution, and fidelity of the 3D seismic data of the Shawan Formation, which is more conducive to the search for lithological traps. Combined with the seismic geological data, several traps were finally found and implemented, indicating that the fidelity of the resultant information is good and can meet the needs of interpretation and comprehensive research. The multiwave scattering imaging method in this paper can complete multiwave field imaging of longitudinal, transverse, and slot waves, which has the advantages of data redundancy, high superposition number, and more accurate imaging than conventional reflection wave imaging and provides field application value for ensuring mine safety production.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3