Affiliation:
1. Harbin Institute of Technology, Center of Geophysics and Department of Mathematics, Harbin, China.(corresponding author).
Abstract
Seismic wavelet estimation and deconvolution are essential for high-resolution seismic processing. Because of the influence of absorption and scattering, the frequency and phase of the seismic wavelet change with time during wave propagation, leading to a time-varying seismic wavelet. To obtain reflectivity coefficients with more accurate relative amplitudes, we should compute a nonstationary deconvolution of this seismogram, which might be difficult to solve. We have extended sparse spike deconvolution via Toeplitz-sparse matrix factorization to a nonstationary sparse spike deconvolution approach with anelastic attenuation. We do this by separating our model into subproblems in each of which the wavelet estimation problem is solved by the classic sparse optimization algorithms. We find numerical examples that illustrate the parameter setting, noisy seismogram, and the estimation error of the [Formula: see text] value to validate the effectiveness of our extended approach. More importantly, taking advantage of the high accuracy of the estimated [Formula: see text] value, we obtain better performance than with the stationary Toeplitz-sparse spike deconvolution approach in real seismic data.
Funder
National Key Research and Development Program of China
NSFC
China Scholarship Council
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献