High‐resolution reservoir prediction method based on data‐driven and model‐based approaches

Author:

ZeYang Liu12,Wei Song12,XiaoHong Chen12,WenJin Li12,Zhichao Li12,GuoChang Liu12

Affiliation:

1. National Engineering Laboratory for Offshore Oil Exploration China University of Petroleum Beijing China

2. State Key Laboratory of Petroleum Resources and Prospecting China University of Petroleum Beijing China

Abstract

AbstractThe Jiyang depression in the southeastern part of the Bohai Bay Basin has a relatively large scale set of shale oil in the Paleogene Shahejie Formation, but the complex internal components lead to narrow frequency bands, low resolution and difficulty in reservoir information extraction. Impedance is important information for reservoir characterization, and how to predict high‐resolution impedance using available information is particularly important. Deep learning, known for its effectiveness in addressing non‐linear problems, has found extensive applications in various fields of oil and gas exploration. However, the challenges of overfitting and poor generalization persist due to the limited availability of training datasets. Besides, existing methods often use networks to solve a single problem in fact, deep learning can deal with a series of problems intelligently. In order to partially solve the above problems, an intelligent storage prediction network framework is proposed in this paper. Physical information is introduced to realize data‐driven and model‐based approaches, thus solving the problem of difficult construction of training datasets. The processing part accomplishes the high‐resolution processing of seismic records, thus solving the problems of narrow bandwidth and low resolution. Initial model constraints are introduced so as to obtain more stable inversion results. Finally, the well data is compared and analysed to identify and predict the lithology and complete the intelligent prediction of unconventional reservoirs. The results are compared with the traditional model‐driven inversion method, revealing that the approach presented in this paper exhibits higher resolution in predicting dolomite. This contributes to the establishment of a robust data foundation for reservoir evaluation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3