Predicting the Remaining Time before Earthquake Occurrence Based on Mel Spectrogram Features Extraction and Ensemble Learning

Author:

Zhang Bo1ORCID,Xu Tao1ORCID,Chen Wen2ORCID,Zhang Chongyang1

Affiliation:

1. School of Petroleum, China University of Petroleum-Beijing at Karamay, Karamay 834000, China

2. School of Liberature and Science, China University of Petroleum-Beijing at Karamay, Karamay 834000, China

Abstract

Predicting the remaining time before the next earthquake based on seismic signals generated in a laboratory setting is a challenging research task that is of significant importance for earthquake hazard assessment. In this study, we employed a mel spectrogram and the mel frequency cepstral coefficient (MFCC) to extract relevant features from seismic signals. Furthermore, we proposed a deep learning model with a hierarchical structure. This model combines the characteristics of long short-term memory (LSTM), one-dimensional convolutional neural networks (1D-CNN), and two-dimensional convolutional neural networks (2D-CNN). Additionally, we applied a stacking model fusion strategy, combining gradient boosting trees with deep learning models to achieve optimal performance. We compared the performance of the aforementioned feature extraction methods and related models for earthquake prediction. The results revealed a significant improvement in predictive performance when the mel spectrogram and stacking were introduced. Additionally, we found that the combination of 1D-CNN and 2D-CNN has unique advantages in handling time-series problems.

Funder

Basic Scientific Research Business Expenses for Universities in the Autonomous Region: Scientific Research Projects

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3