Robust estimation of vertical symmetry axis models via joint migration inversion: Including multiples in anisotropic parameter estimation

Author:

Alshuhail Abdulrahman A.1ORCID,Verschuur Dirk J.2

Affiliation:

1. Saudi Aramco, Dhahran, Saudi Arabia.(corresponding author).

2. Delft University of Technology, Lorentzweg 1, Delft, Netherlands..

Abstract

Because the earth is predominately anisotropic, the anisotropy of the medium needs to be included in seismic imaging to avoid mispositioning of reflectors and unfocused images. Deriving accurate anisotropic velocities from the seismic reflection measurements is a highly nonlinear and ambiguous process. To mitigate the nonlinearity and trade-offs between parameters, we have included anisotropy in the so-called joint migration inversion (JMI) method, in which we limit ourselves to the case of transverse isotropy with a vertical symmetry axis. The JMI method is based on strictly separating the scattering effects in the data from the propagation effects. The scattering information is encoded in the reflectivity operators, whereas the phase information is encoded in the propagation operators. This strict separation enables the method to be more robust, in that it can appropriately handle a wide range of starting models, even when the differences in traveltimes are more than a half cycle away. The method also uses internal multiples in estimating reflectivities and anisotropic velocities. Including internal multiples in inversion not only reduces the crosstalk in the final image, but it can also reduce the trade-off between the anisotropic parameters because internal multiples usually have more of an imprint of the subsurface parameters compared with primaries. The inverse problem is parameterized in terms of a reflectivity, vertical velocity, horizontal velocity, and a fixed [Formula: see text] value. The method is demonstrated on several synthetic models and a marine data set from the North Sea. Our results indicate that using JMI for anisotropic inversion makes the inversion robust in terms of using highly erroneous initial models. Moreover, internal multiples can contain valuable information on the subsurface parameters, which can help to reduce the trade-off between anisotropic parameters in inversion.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3