Velocity analysis by iterative profile migration

Author:

Al‐Yahya Kamal1

Affiliation:

1. ARAMCO, P.O. Box 5037, Dhahran 31311, Saudi Arabia

Abstract

In conventional seismic processing, velocity analysis is performed by using the normal moveout (NMO) equation which is based on the assumption of flat, horizontal reflectors. Imaging by migration (either before or after stack) is done normally in a subsequent step using these velocities. In this paper, velocity analysis and imaging are combined in one step, and migration itself is used as a velocity indicator. Because, unlike NMO, migration can be formulated for any velocity function, migration‐based velocity analysis methods are capable of handling arbitrary structures, i.e., those with lateral velocity variations. In the proposed scheme, each shot gather (profile) is migrated with an initial depth‐velocity model. Profile migration is implemented in the (x, ω) domain, but the actual implementation of profile migration is not critical, as long as it is not done in a spatial‐wavenumber domain, which would preclude handling of lateral velocity variations. After migration with an initial velocity model, the velocity error is estimated, and the initial velocity model is updated; the process is repeated until convergence is achieved. The velocity analysis is based on the principle that after prestack migration with the correct velocity model, an image in a common‐receiver gather (CRG) is aligned horizontally regardless of structure. The deviation from horizontal alignment is therefore a measure of the error in velocity. If the migration velocity is lower than the velocity of the medium, events curve upward, whereas if the migration velocity is higher than the velocity of the medium, events curve downward.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 321 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3