3D distributed and dispersed source array acquisition and data processing

Author:

Tsingas Constantinos1,Almubarak Mohammed S.1,Jeong Woodon1,Al Shuhail Abdulrahman1,Trzesniowski Zygmunt2

Affiliation:

1. Saudi Aramco, EXPEC Advanced Research Center, Dhahran, Saudi Arabia.and .

2. Saudi Aramco, Geophysical Data Acquisition, Dhahran, Saudi Arabia..

Abstract

Numerous field acquisition examples and case studies have demonstrated the importance of recording, processing, and interpreting broadband land data. In most seismic acquisition surveys, three main objectives should be considered: (1) dense spatial source and receiver locations to achieve optimum subsurface illumination and wavefield sampling; (2) coverage of the full frequency spectrum, i.e., broadband acquisition; and (3) cost efficiency. Consequently, an effort has been made to improve the manufacturing of seismic vibratory sources by providing the ability to emit both lower (approximately 1.5 Hz) and higher frequencies (approximately 120 Hz) and of receivers by utilizing single, denser, and lighter digital sensors. All these developments achieve both operational (i.e., weight, optimized power consumption) and geophysical benefits (i.e., amplitude and phase response, vector fidelity, tilt detection). As part of the effort to reduce the acquisition cycle time, increase productivity, and improve seismic imaging and resolution while optimizing costs, a novel seismic acquisition survey was conducted employing 24 vibrators generating two different types of sweeps in a 3D unconstrained decentralized and dispersed source array field configuration. During this novel blended acquisition design, the crew reached a maximum of 65,000 vibrator points during 24 hours of continuous recording, which represents significantly higher productivity than a conventional seismic crew operating in the same area using a nonblended centralized source mode. Applying novel and newly developed deblending algorithms, high-resolution images were obtained. In addition, two data sets (i.e., low-frequency and medium-high-frequency sources) were merged to obtain full-bandwidth broadband seismic images. Data comparisons between the distributed blended and nonblended conventional surveys, acquired by the same crew during the same time over the same area, showed that the two data sets are very similar in the poststack and prestack domains.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automation of seismic scouting with robotics and machine learning;Seventh International Conference on Engineering Geophysics, Al Ain, UAE, 16–19 October 2023;2024-03-12

2. Quantitative evaluation of 3D land acquisition geometries with arrays and single sensors: Closing the loop between acquisition and processing;The Leading Edge;2023-05

3. Distributed 3D Environment Design System Based on Color Image Model;Mathematical Problems in Engineering;2022-09-22

4. Deblending and merging of 3D multi‐sweep seismic blended data;Geophysical Prospecting;2021-12-08

5. High-resolution beam tomography on 3D land data applications;First International Meeting for Applied Geoscience & Energy Expanded Abstracts;2021-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3