Reciprocity and double plane-wave migration

Author:

Zhao Zeyu1ORCID,Sen Mrinal K.1ORCID,Stoffa Paul L.1

Affiliation:

1. The University of Texas at Austin, John A. and Katherine G. Jackson School of Geosciences, Institute for Geophysics, Austin, Texas, USA..

Abstract

In plane-wave migration techniques, plane-wave data sets with seismic energy in both positive and negative ray-parameter sections are more desirable than those with seismic energy only in either positive or negative ray-parameter sections. Such plane-wave data sets are often referred to as optimal plane-wave data sets because they can be used to illuminate the subsurface from both sides of the targets and, therefore, can produce sharp images. Traditionally, to obtain optimal plane-wave data sets from one-sided gathers generated by marine seismic acquisition geometry, one needs to invoke the reciprocity principle to sort split-spread gathers prior to implementing plane-wave decomposition. We have investigated the applicability of the reciprocity principle in the double plane-wave (DPW) domain. We have developed an easy and efficient merging method that generates optimal plane-wave data sets in the DPW domain using one-sided shot gathers. We call this resultant plane-wave data set the “optimal DPW data set.” We find that an optimal DPW data set transformed from one-sided gathers is a good approximation to a DPW data set transformed from split-spread gathers with the same maximum offset as that of the one-sided gathers. We find that ray-parameter common-image gathers with continuous events in both positive and negative ray-parameter sections can be generated by migrating optimal DPW data sets. This helps migration velocity analysis and improves the subsurface illumination. In addition, we show that the computational cost of DPW migration methods could be reduced with the help of the reciprocity principle. We test our proposed method using a synthetic model to demonstrate its effectiveness.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference22 articles.

1. SEG/EAGE 3-D Modeling Series 1;Aminzadeh F.,1997

2. Reflector imaging

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3