Least-squares reverse time migration with sparse regularization in the 2D wavelet domain

Author:

Li Feipeng1ORCID,Gao Jinghuai2ORCID,Gao Zhaoqi2ORCID,Jiang Xiudi3,Sun Wenbo3

Affiliation:

1. Xi’an Jiaotong University, School of Information and Communication Engineering, Faculty of Electronic and Information Engineering, Xi’an 710049, China..

2. Xi’an Jiaotong University, School of Information and Communication Engineering, Faculty of Electronic and Information Engineering, Xi’an 710049, China and Xi’an Jiaotong University, National Engineering Laboratory for Offshore Oil Exploration, Xi’an 710049, China.(corresponding author);

3. CNOOC Research Institute, Beijing 100028, China..

Abstract

The inadequate sampling of seismic data in the spatial dimension results in migration artifacts. Conventional least-squares reverse time migration (LSRTM) could improve the image quality. However, even LSRTM will not work in some inadequately sampling situations. To mitigate the impact of migration artifacts, we have developed a new LSRTM method with a sparse regularization, which takes advantage of the effective sparse representation of the subsurface reflectivity model in the 2D undecimated wavelet transform (UWT) domain. Different from other sparse regularizations, a sparseness constraint in the 2D UWT domain is applied on the angle slices of the image. To efficiently solve the least-squares inversion problem, we employ an inversion scheme using the conjugate gradient method that uses a soft threshold method to achieve sparse constraint in updating the conjugate gradient direction. Compared with the sparse constraint based on the discrete wavelet transform (DWT), the threshold in this method is angle-dependent and is determined according to the energy distribution of each angle slice. To avoid overregularization that can lead to instability and increase the number of iterations, we also apply an exponential threshold strategy. Numerical tests on synthetic datasets demonstrate that our method is capable of improving the image quality by enhancing the resolution and suppressing migration artifacts caused by inadequately sampled seismic data. The method can converge more rapidly than conventional LSRTM. Because this method performs sparse regularization on several slopes, it achieves better performance on enhancing complex structures with discontinuities such as the steeply dipping faults compared to DWT-based regularization.

Funder

National Key Research and Development Program of China

The National Science and Technology Major Project of China

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3