Angle-dependent image-domain least-squares migration through analytical point spread functions

Author:

Zhang Wei1ORCID,Guo Xuebao2ORCID,Ravasi Matteo3ORCID,Gao Jinghuai1ORCID,Sun Wenbo4

Affiliation:

1. Xi’an Jiaotong University, School of Information and Communications Engineering, Xi’an, China.

2. Harbin Institute of Technology, Department of Mathematics and Center of Geophysics, Harbin, China. (corresponding author)

3. King Abdullah University of Science and Technology, Earth Science and Engineering, Physical Sciences and Engineering, Thuwal, Saudi Arabia.

4. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing, China.

Abstract

Image-domain least-squares migration (IDLSM) is an established approach to recover high-fidelity seismic images of subsurface reflectors; this is achieved by removing the blurring effects of the Hessian operator in the standard migration approach with the help of so-called point spread functions (PSFs). However, most of the existing IDLSM approaches recover an angle-independent image of the subsurface reflectors, which is not suitable for subsequent amplitude-variation-with-angle (AVA) analysis. To overcome this limitation, we have developed an angle-dependent IDLSM approach, denoted as AD-IDLSM, which can recover a high-fidelity and high-resolution angle-dependent reflectivity image of subsurface reflectors. The problem is formulated here as an angle-dependent image-domain inversion with PSFs computed by means of full-wave Green’s function. More specifically, we derive an analytical expression to compute angle-dependent PSFs by means of a wave-equation-based Kirchhoff migration (WEBKM) engine, where a localization assumption is made in both spatial directions to decrease the computational cost and memory overhead. The amplitude and traveltime of the Green’s functions involved in the WEBKM approach are estimated by the excitation amplitude and excitation time of the full-wave wavefield. The scattering angle is then approximately estimated from the Poynting vector of the excitation-time field. To stabilize the solution of AD-IDLSM, we use a regularization scheme that applies a second derivative along the direction of the reflection angle of angle-domain common-image gathers (ADCIGs) to ensure continuity in the amplitude variations versus angle and suppress migration artifacts. We demonstrate the effectiveness of the AD-IDLSM approach through two synthetic and one field marine data set; the presented results confirm that AD-IDLSM can create ADCIGs with higher spatial resolution, better amplitude fidelity, and fewer migration artifacts compared with those obtained by its migration counterpart. Moreover, AD-IDLSM amplitude variations with angle are shown to closely resemble the theoretical AVA curve of the reflectors.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Chinese Postdoctoral Science Foundation

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3