An implicit stabilization strategy for Q-compensated reverse time migration

Author:

Chen Hanming1ORCID,Zhou Hui1ORCID,Rao Ying1

Affiliation:

1. China University of Petroleum (Beijing), State Key Lab of Petroleum Resources and Prospecting, China Key Lab of Geophysical Exploration of CNPC, Beijing 102249, China.(corresponding author); .

Abstract

Reverse time migration with [Formula: see text] compensation ([Formula: see text]-RTM) is an effective approach to enhance the resolution of seismic images because it retrieves the amplitude loss and phase distortion induced by the viscosity of media. According to the crosscorrelation imaging condition, [Formula: see text]-RTM requires compensation for the amplitude loss in the propagation paths of source and receiver wavefields, which can be realized by solving an amplitude-boosted wave equation. However, the amplitude-boosted simulations suffer from numerical instability due to the amplification of high-frequency noise. We have developed a robust stabilization strategy for [Formula: see text]-RTM by incorporating a time-variant filter into the amplitude-boosted wavefield extrapolation step. We modify the Fourier spectrum of the operator that controls the amplitude compensation to be time variant, and we add to the spectrum a stabilization factor. Doing so, we integrate the time-variant filter into the viscoacoustic wave propagator implicitly, and we avoid any explicit filtering operation in [Formula: see text]-RTM. We verify the robustness of this stabilized [Formula: see text]-RTM with two synthetic data examples. We also apply this technique to a field data set to demonstrate the imaging improvements compared to an acoustic RTM and a more traditional [Formula: see text]-RTM method.

Funder

National Key R & D Program of China

National Natural Science Foundation of China

New Geophysical Technology Method Project of Deep and Unconventional Seismic of the China National Petroleum Corporation

Science Foundation of China University of Petroleum

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3