Affiliation:
1. Petroleum Geo-Services, Geoscience & Engineering, Oslo, Norway; and University of Oslo, Department of Informatics, Oslo, Norway..
2. Petroleum Geo-Services, Geoscience & Engineering, Oslo, Norway..
Abstract
In marine seismic processing, the sea surface is often considered a flat mirror; hence, the effects of different weather conditions during the acquisition are largely ignored. However, studies have shown that rough sea-surface ghosts can severely damage the 4D signal, if not handled properly in data processing. To account for realistic sea-surface effects in processing, the impact of time-varying rough sea surfaces needs to be studied. We derive a method for modeling source and receiver ghosts from the time-varying rough sea surface and their interaction with subsurface reflections. This method is based on acoustic reciprocity and leads to integral equations of nonstationary wavefields. These modeling equations can also serve as a basis for investigating source and receiver deghosting methods for time-varying rough sea surfaces. Our developed modeling algorithm is validated against a frequency-domain approach for a “frozen” rough sea surface. For a moving simple sea surface, the Doppler shift produced by our method is in very good agreement with the analytical solution. Using a Pierson-Moskowitz spectrum, we derive a time-varying rough sea surface and model the receiver ghost, the source ghost, and the source-receiver ghost for the subsurface primary reflections of a heterogeneous geologic model. The results highlight that the source and receiver ghost interactions with a time-varying sea surface differently affect the subsurface reflections, and these effects can significantly impact the seismic repeatability of 4D studies.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献