Elimination of free‐surface related multiples without need of the source wavelet

Author:

Amundsen Lasse1

Affiliation:

1. Statoil Research Centre, Postuttak, N-7005 Trondheim, Norway, and The Norwegian University of Science and Technology, Department of Physics, N-7491 Trondheim, Norway.

Abstract

This paper presents a new, wave‐equation based method for eliminating the effect of the free surface from marine seismic data without destroying primary amplitudes and without any knowledge of the subsurface. Compared with previously published methods which require an estimate of the source wavelet, the present method has the following characteristics: it does not require any information about the marine source array and its signature, it does not rely on removal of the direct wave from the data, and it does not require any explicit deghosting. Moreover, the effect of the source signature is removed from the data in the multiple elimination process by deterministic signature deconvolution, replacing the original source signature radiated from the marine source array with any desired wavelet (within the data frequency‐band) radiated from a monopole point source. The fundamental constraint of the new method is that the vertical derivative of the pressure or the vertical component of the particle velocity is input to the free‐surface demultiple process along with pressure recordings. These additional data are routinely recorded in ocean‐bottom seismic surveys. The method can be applied to conventional towed streamer pressure data recorded in the water column at a depth which is greater than the depth of the source array only when the pressure derivative can be estimated, or even better, is measured. Since the direct wave and its source ghost is part of the free‐ surface demultiple, designature process, the direct arrival must be properly measured for the method to work successfully. In the case when the geology is close to horizontally layering, the free‐surface multiple elimination method greatly simplifies, reducing to a well‐known deterministic deconvolution process which can be applied to common shot gathers (or common receiver gathers or common midpoint gathers when source array variations are negligible) in the τ-p domain or frequency‐wavenumber domain.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 149 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High performance computing seismic redatuming by inversion with algebraic compression and multiple precisions;The International Journal of High Performance Computing Applications;2024-01-30

2. Can tile low-rank compression live up to expectations? An application to 3D multidimensional deconvolution;Third International Meeting for Applied Geoscience & Energy Expanded Abstracts;2023-12-14

3. Acoustic cloning;Physical Review Applied;2023-12-08

4. Scaling the “Memory Wall” for Multi-Dimensional Seismic Processing with Algebraic Compression on Cerebras CS-2 Systems;Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis;2023-11-11

5. Improved Up-Down Deconvolution in Ultra-Shallow Waters Offshore Abu Dhabi;Day 2 Tue, October 03, 2023;2023-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3