Wavenumber‐based filtering of marine point‐source data

Author:

Amundsen Lasse1

Affiliation:

1. Statoil Research Centre, Postuttak, N-7004 Trondheim, Norway

Abstract

In seismic processing, plane‐wave decomposition has played a fundamental role, serving as a basis for developing sophisticated processing techniques valid for depth‐dependent models. By comparing analytical expressions for the decomposed wavefields, we review several processing algorithms of interest for the geophysicist. The algorithms may be applied to marine point‐source data acquired over a horizontally layered viscoelastic and anisotropic medium. The plane‐wave decomposition is based on the Fourier transform integral for line‐source data and the Hankel transform integral for point‐source data. The involved wavenumber integrals of the cosine or Bessel‐function type are difficult to evaluate accurately and efficiently. However, a number of the processing techniques can easily be run as a filtering operation in the spatial domain without transforming to the wavenumber domain. The mathematical expressions for the spatial filters are derived using plane wave analysis. With numerical examples, we demonstrate the separation of upgoing and downgoing waves from the pressure, the removal of the source ghost from the pressure, and the transformation of point‐source pressure data to the corresponding line‐source data. The filters for these three processes work satisfactorily. Limited spatial aperture is discussed both for point‐source and line‐source data. The resolution kernels relating finite‐aperture decomposed data to infinite‐aperture decomposed data are given. The kernels are approximately equal in the asymptotic limit when the minimum offset is zero.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3