Interpretation of formation permeability and pressure responses from wireline formation testing with consideration of interlayers

Author:

Yang Min1,Yang Daoyong2,Chen Andrew3

Affiliation:

1. University of Regina, Regina, Canada..

2. University of Regina, Petroleum Systems Engineering, Regina, Canada..

3. Shell Canada Ltd., Calgary, Canada..

Abstract

We have developed a workflow to interpret formation permeability in a hydrocarbon reservoir with consideration of interlayers by numerically simulating the measured pump-out flow and pressure responses from wireline formation testing (WFT). With the field data obtained from a dual packer tool in the deepwater Gulf of Mexico, we have developed and validated a high-resolution numerical model to simulate the fluid-sampling process together with transient pressure. History matching has been performed with field data to assess the effective thickness and then interpret the permeability for each flow unit. In addition to generating eight cases under various configurations of laminated layers, we use pressure buildup derivatives obtained from packers and observation probes as a diagnosis tool to examine the effect of the interlayer on WFT measurements. Oil-based mud-filtrate invasion affects the early-time behavior of pressure transients because of the associated changes in fluid viscosity and compositions. Low vertical permeability can behave as a vertical barrier for the flow in a WFT tool, indicating the difference contrast in permeability between individual flow units. As for the field case, effective water horizontal permeabilities for tests 1 and 2 are 14.0 and 10.6 mD, respectively. Low vertical permeability results in a distortion in the derivatives, particularly during the transition between flow regimes. In a laminated reservoir, a radial flow regime will develop when the radial length of interlayer is greater than the vertical formation interval and when the complete circular shape of interlayer is formed. It is recommended that any observation probe be positioned in or below the interlayer to accurately define the vertical communication of interlayers and its configuration. If dual packers and observation probes are located in the same zone, their pressure responses exhibit the same flow regimes; otherwise, different pressure responses can be developed in the observation probes when a partially sealing interlayer exists.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3