Simultaneous Interpretation of Relative Permeability and Capillary Pressure for a Naturally Fractured Carbonate Formation From Wireline Formation Testing

Author:

Liu Xiangnan1,Yang Daoyong1,Chen Andrew2

Affiliation:

1. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2, Canada

2. Shell Canada Ltd., Calgary, Alberta, T2P 2H5, Canada

Abstract

Abstract In this paper, pragmatic and robust techniques have been developed to simultaneously interpret absolute permeability and relative permeability together with capillary pressure in a naturally fractured carbonate formation from wireline formation testing (WFT) measurements. By using two sets of pressure and flow rate field data collected by a dual-packer tool, two high-resolution cylindrical near-wellbore numerical models are developed for each dataset on the basis of single- and dual-porosity concepts. Then, simulations and history matchings are performed for both the measured pressure drawdown and buildup profiles, while absolute permeability is determined and relative permeability is interpreted with and without considering capillary pressure. Compared to the experimentally measured relative permeability curves for the same formation collected from the literature, relative permeability interpreted with consideration of capillary pressure has a better match than those without considering capillary pressure. Also, relative permeability obtained from dual-porosity models has similar characteristics to those from single-porosity models especially in the region away from the endpoints, though the computational expenses with dual-porosity models are much larger. Absolute permeabilities in the vertical and the horizontal directions of the upper layer are determined to be 201.0 mD and 86.4 mD, respectively, while those of the lower layer are found to be 342.9 mD and 1.8 mD, respectively. Such a large vertical permeability of the lower layer reflects the contribution of the extensively distributed natural fractures in the vertical direction.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference88 articles.

1. Predicting Carbonate Permeabilities From Wireline Logs Using a Back-Propagation Neural Network;Wiener,1991

2. Experimental Investigation of Matrix Permeability of Gas Shales;Heller;AAPG Bull.,2014

3. Steam-Water and Air-Water Capillary Pressures: Measurement and Comparison;Li;J. Can. Pet. Technol.,2004

4. Estimation of the Water–Oil Relative Permeability Curve From Radial Displacement Experiments. Part 2: Reasonable Experimental Parameters;Hou;Energy Fuels,2012

5. Recent Advances in Core Analysis;Shafer;Petrophysics,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3