A New Low-Damage Drilling Fluid for Sandstone Reservoirs With Low-Permeability: Formulation, Evaluation, and Applications

Author:

Wang Chengwen12,Wang Yanji2,Kuru Ergun3,Chen Erding4,Xiao Fengfeng5,Chen Zehua12,Yang Daoyong6

Affiliation:

1. Key Laboratory of Unconventional Oil & Gas Development, China University of Petroleum (East China), Qingdao 266580, China;

2. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

3. Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 2W2, Canada

4. Drilling Technology Research Institute, Shengli Petroleum Engineering Co., Ltd., SINOPEC, Dongying, Shandong 257017, China

5. Drilling Fluid Technology Service Corporation, CNPC Chuanqing Drilling Engineering Company, Chengdu 610051, China

6. Petroleum Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada

Abstract

Abstract Drilling-induced formation damage is the key factor dominating the failure of the development of hydrocarbon reservoirs with low-permeability (i.e., tight formation). In this paper, a new low-damage drilling fluid was formulated, evaluated, and applied to well-drilling operations in a sandstone oil reservoir with low-permeability in the Shengli Oilfield, China. To formulate this low-damage drilling fluid, filter-cake forming agents were used to prevent fluid loss, inhibitors were used to enhance the shale inhibition of the fluid, surfactants were used to minimize water block, and inorganic salts were used to enhance compatibility. A holistic experimental approach combining micro-computed tomography (CT), scanning electron microscopy (SEM), Fourier transform-infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) techniques was designed to identify the underlying interactions between new and conventional drilling fluids and rock samples as well as the corresponding damage mechanisms, demonstrating the significant mitigation effects of the newly formulated drilling fluid on formation damage, which mainly results from the hydration of clay minerals and the invasion of solid particles. The newly formulated low-damage drilling fluid then extended its applications to well-drilling operations with excellent performance. Not only can the new low-damage drilling fluid avoid non-fracturing stimulation, but also reduce the drilling operational costs and time, minimize the formation damage, and facilitate extending the reservoir life for a longer time.

Funder

National Natural Science Foundation of China

China National Petroleum Corporation

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3