Affiliation:
1. Shell International Exploration and Production
2. Schlumberger Oilfield Services
Abstract
Summary
Miscible oil-based-mud (OBM) filtrate contamination poses a major challenge to the acquisition of representative fluid samples using wireline formation testers (WFTs). A sound understanding of the OBM-filtrate cleanup process and identification of first-order impact parameters are of paramount importance for the design of next-generation WFT probes that can operate in OBM-filtrate environments with enhanced efficiency.
We have constructed a numerical model for OBM-filtrate cleanup using an equation-of-state (EOS) compositional fluid-flow simulator. The numerical cleanup model honors the physics of multicomponent-fluid flow and the thermodynamics of phase behavior. Simulation results exhibit close agreement with analytical predictions and with field data for the time dependence of contamination during sampling. First-order impact parameters were identified through a sensitivity study using the numerical model. It has been found that the clean-up function is predominantly governed by permeability anisotropy, porosity, cleanup flowrate, viscosity ratio, depth of invasion, distance between the WFT probe and a sealing boundary, formation thickness, and wellbore radius. A response-surface-based contamination model (RSCM) was developed using the above-described simulation investment with additional runs. RSCM constitutes a rapid approximate model and can serve as a prejob-planning or real-time-analysis tool. Our simulation and rapid-modeling results compare well with empirical observations made in the field. In particular, the rate of change of miscible contamination with time has been found to vary between t0.3 and t0.6, with t0.45 representing a good average value. For the first time, modeling has been shown to give essentially the same results as empirical observations.
Publisher
Society of Petroleum Engineers (SPE)
Subject
Geology,Energy Engineering and Power Technology,Fuel Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献