The effect of micrite content on the acoustic velocity of carbonate rocks

Author:

El Husseiny Ammar1,Vanorio Tiziana1

Affiliation:

1. Stanford University, Geophysics Department, Stanford Rock Physics Laboratory, Stanford, California, USA..

Abstract

We have demonstrated the effect of micrite content on the acoustic properties of well-controlled microstructures that are created in the laboratory to closely mimic those of carbonate rocks. In particular, we examined the effect of micrite content on the acoustic velocity, sensitivity of velocity to pressure, and changes in velocity resulting from dissolution upon saturation with a reactive fluid. We followed Dunham’s classification and fabricated the samples by mixing coarse (sand-sized) and very fine (micrite-sized) calcite grains in different ratios and then cold compressing the mixture. The acoustic velocities were measured under benchtop conditions and as functions of confining pressure before and after the injection of a [Formula: see text] aqueous solution. The benchtop measurements indicated that the addition of micrite made the frame of the carbonate samples stiffer. Because the sensitivity of velocity to pressure decreases as the content of micrite increases, we hypothesized a stiffer pore structure in micrite-richer fabrics. Moreover, the content of micrite seems also to affect the change in elastic moduli upon dissolution. Micrite-rich samples experience a drop in elastic moduli after fluid injection, with respect to the moduli measured under dry conditions. This was interpreted as being likely due to dissolution, which weakens the rock frame. Such an effect seems to overcome the stiffening that results from dispersion mechanisms under high-frequency conditions.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3