Effects of diagenetic processes on the velocity evolution in carbonate reservoirs

Author:

Khosravi Mohammad Hossein,Emami Niri Mohammad,Saberi Mohammad Reza

Abstract

AbstractCarbonate rocks are geologically complex due to the diagenetic processes they experience before and after lithification. Diagenetic processes alter their matrix and pore structure leading to the modification in their sonic velocities. Understanding the effect of these diagenetic features on the seismic velocities is crucial to have a reliable image of the subsurface. The dataset used in this study comprises well logs, and core data. Core data were analyzed using different methods (i.e., thin section analysis, X-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM images)) to investigate the presence or absence of different diagenetic processes in each depth interval of the Sarvak formation. In order to minimize porosity effects on velocity variations, we divided all porosity data into five equal porosity classes and performed bar chart analysis in each class. The results indicated that bioturbation (through stiff pore creation and infilling with stiff minerals) and compaction (through pore space volume reduction) increase velocities, but dissolution increased velocities only for the low porosity samples (through moldic and vuggy pores creation) while reduced it in the high porosity samples (through the interconnection of the isolated pores). Furthermore, porosity enhancement (through increasing pore space volume), micritization (through porosity reduction inhibition during compaction), open fracture (through creation of soft pores and cracks), and neomorphism (through the creation of microporosity during compaction) reduce sonic velocities.

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3