Improving input/output performance in 2D and 3D angle-domain common-image gathers from reverse time migration

Author:

Jin Hu1,McMechan George A.2,Nguyen Bao3

Affiliation:

1. Formerly The University of Texas at Dallas, Center for Lithospheric Studies, Richardson; presently BP America, Inc., Houston, Texas, USA..

2. The University of Texas at Dallas, Center for Lithospheric Studies, Richardson, Texas, USA..

3. Formerly The University of Texas at Dallas, Center for Lithospheric Studies, Richardson; presently Nexen Petroleum U.S.A. Inc., Houston, Texas, USA..

Abstract

We have developed a new method of extracting angle-domain common-image gathers (ADCIGs) from prestack reverse time migration (RTM) that has minimal intermediate storage requirements. To include multipathing, we applied an imaging condition for prestack RTM that uses multiple excitation image times. Instead of saving the full-source snapshots at all time steps, we picked and saved only a few of the highest amplitude arrivals, and their corresponding excitation times, of the source wavefield at each grid point, and we crosscorrelated with the receiver wavefield. When extracting the ADCIGs from RTM, we calculated the source propagation direction from the gradient of the excitation times. The result was that the source time snapshots do not have to be saved or reconstructed during RTM or while extracting ADCIGs. We calculated the receiver propagation direction from Poynting vectors during the receiver extrapolation at each time step and the reflector normal direction by the phase-gradient method. With a new strategy that uses three direction vectors (the source and receiver propagation directions as well as the reflector normal direction), we provided more reliable ADCIGs that are free of low-wavenumber artifacts than any two of them do separately, when the migration velocity model was near to the correct velocity model. The 2D and 3D synthetic tests demonstrated the successful application of the new algorithms with acceptable accuracy, improved storage efficiency, and without an input/output bottleneck.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3