3-D prestack migration of common‐azimuth data

Author:

Biondi Biondo1,Palacharla Gopal1

Affiliation:

1. Stanford Exploration Project, 360 Mitchell Building, Stanford, CA 94305-2215

Abstract

In principle, downward continuation of 3-D prestack data should be carried out in the 5-D space of full 3-D prestack geometry (recording time, source surface location, and receiver surface location), even when the data sets to be migrated have fewer dimensions, as in the case of common‐azimuth data sets that are only four dimensional. This increase in dimensionality of the computational space causes a severe increase in the amount of computations required for migrating the data. Unless this computational efficiency issue is solved, 3-D prestack migration methods based on downward continuation cannot compete with Kirchhoff methods. We address this problem by presenting a method for downward continuing common‐azimuth data in the original 4-D space of the common‐azimuth data geometry. The method is based on a new common‐azimuth downward‐continuation operator derived by a stationary‐phase approximation of the full 3-D prestack downward‐continuation operator expressed in the frequency‐wavenumber domain. Although the new common‐azimuth operator is exact only for constant velocity, a ray‐theoretical interpretation of the stationary‐phase approximation enables us to derive an accurate generalization of the method to media with both vertical and lateral velocity variations. The proposed migration method successfully imaged a synthetic data set that was generated assuming strong lateral and vertical velocity gradients. The common‐azimuth downward‐continuation theory also can be applied to the derivation of a computationally efficient constant‐velocity Stolt migration of common‐azimuth data. The Stolt migration formulation leads to the important theoretical result that constant‐velocity common‐azimuth migration can be split into two exact sequential migration processes: 2-D prestack migration along the inline direction, followed by 2-D zero‐offset migration along the cross‐line direction.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3