Correlation-based reflection full-waveform inversion

Author:

Chi Benxin1,Dong Liangguo1,Liu Yuzhu1

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China..

Abstract

Because modeling for full-waveform inversion (FWI) cannot produce reflections unless the velocity model has the scattering potential (high wavenumbers), using a migration/demigration process to generate modeling data, which is a key step in what is now known as reflection FWI (RFWI), is a credible alternative to tackle the reflection nonlinearity associated with FWI. However, because RFWI depends on a conventional data residual or zero-lag correlation objective function, high nonlinearity can still exist when the true amplitude migration is not used, as well as at far offsets due to cycle skipping. To avoid the cycle skipping and the need for a true amplitude migration, we have developed a correlation-based reflection full-waveform inversion method to update the low-wavenumber components of the velocity model. The success of this method relies on a sensitivity kernel decomposition and a correlation-based objective function. The sensitivity kernel decomposition makes it possible to separate out the contributions of different subkernels and to smear the reflected wave residuals along the “rabbit-ear” wavepath to obtain middle and deep background model estimates. The correlation-based objective function measures differences in kinematic information and behaves in a more linear way than the traditional waveform residual misfit. Moreover, our approach is less sensitive to the frequency content and amplitude information of the seismic data, enabling reliable background velocity estimates to be obtained without the need for low frequencies and full-physics modeling. Because the kinematic features of reflected waves are described correctly, the inversion result of the proposed method can be used as a migration model or an initial model for conventional FWI to achieve a correct high-wavenumber model update.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3