Envelope normalized reflection waveform inversion

Author:

Wang Yilin1ORCID,Chi Benxin2,Dong Liangguo1

Affiliation:

1. State Key Laboratory of Marine Geology Tongji University Shanghai China

2. State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan China

Abstract

AbstractThe reflection waveform inversion has the capability to reconstruct the background velocity model using only the reflection data by employing a migration/demigration process. Utilizing the waveform discrepancy to update the background velocity model, the conventional reflection waveform inversion method heavily relies on the true‐amplitude migration/demigration technique to reproduce the primary amplitude information from the observed reflections. We can reproduce the amplitude of observed reflections by performing least‐squares reverse time migration to estimate the reflectivity in each iteration. However, this strategy is quite time‐consuming. To avoid the need for the true‐amplitude migration/demigration or least‐squares reverse time migration, we develop an amplitude‐independent reflection waveform inversion method that uses an envelope‐normalized objective function. The envelope‐normalized waveform difference can extract the phase residuals accurately as a function of time. Compared with the global energy–normalized misfit, our proposed envelope‐normalized objective function is essentially a phase‐matched measurement. At the same time, due to the amplitude independence of our proposed objective function, the subsequent weak reflections contribute with a similar weight to the total value of the misfit as the strong early reflections do. This makes it possible to recover the deep subsurface velocity. Synthetic data of the Sigsbee model and marine streamer field data applications validate that our amplitude‐independent reflection waveform inversion method can further improve the resolution and accuracy by aligning the reflection events of synthetic and observed data phase to phase without the need to perform true‐amplitude migration/demigration or least‐squares reverse time migration as in conventional reflection waveform inversion.

Funder

Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3