Cross‐correlation reflection waveform inversion based on a weighted norm of the time‐shift obtained by dynamic image warping

Author:

Qu Yingming12,Dong Shihao12,Zhong Tianmiao12,Ren Yi12,Li Zizheng12,Xing Boshen12,Li Yifan12

Affiliation:

1. National Key Laboratory of Deep Oil & Gas China University of Petroleum (East China) Qingdao China

2. School of Geosciences China University of Petroleum Qingdao China

Abstract

AbstractThe computational efficiency of cross‐correlation reflection waveform inversion can be improved by utilizing the outcomes of reverse time migration instead of the least‐squares reverse time migration results in each iteration. However, the inversion effect of cross‐correlation reflection waveform inversion needs to be optimized as the inversion results may not be optimal. The conventional cross‐correlation operator tends to produce interference values that can compromise the precision of time‐shift estimations. Moreover, the time shift obtained through dynamic image warping can exhibit spiky disturbances, making it difficult to determine accurate time‐shift values. These challenges can cause the inversion process to converge to a local minimum, thereby affecting the quality of the inversion results. To address these limitations, this paper proposes a new approach called cross‐correlation reflection waveform inversion based on dynamic image warping. The proposed method integrates a weighted norm derived from dynamic image warping to effectively regulate the time‐shift values throughout the inversion process. The effectiveness of the proposed cross‐correlation reflection waveform inversion based on the dynamic image warping method is validated through simulations using a simple two‐layer model and a resampled Sigsbee 2A model. A comparative analysis is performed to evaluate the performance of cross‐correlation reflection waveform inversion based on dynamic image warping in mitigating cross‐correlation interference, demonstrating its superior capability compared to the conventional cross‐correlation reflection waveform inversion method.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3