Imaging salt bodies using explicit migration operators offshore Norway

Author:

Arntsen Børge123,Gerea Constantin123,Røsten Tage123

Affiliation:

1. Formerly Statoil, Trondheim, Norway; presently, Norwegian University of Science and Technology, Department of Petroleum Technology and Applied Geophysics, Trondheim, Norway. .

2. Formerly Statoil, Trondheim, Norway; presently at Total, Pau, France. .

3. Statoil, Trondheim, Norway. .

Abstract

We have tested the performance of 3D shot-profile depth migration using explicit migration operators on a real 3D marine data set. The data were acquired offshore Norway in an area with a complex subsurface containing large salt bodies. We compared shot-profile migration using explicit migration operators with conventional Kirchhoff migration, split-step Fourier migration, and common-azimuth by generalized screen propagator (GSP) migration in terms of quality and computational cost. Image quality produced by the explicit migration operator approach is slightly better than with split-step Fourier migration and clearly better than in common-azimuth by GSP and Kirchhoff migrations. The main differences are fewer artifacts and better-suppressed noise within the salt bodies. Kirchhoff migration shows considerable artifacts (migration smiles) within and close to the salt bodies, which are not present in images produced by the other three wave-equation methods. Expressions for computational cost were developed for all four migration algorithms in terms of frequency content and acquisition parameters. For comparable frequency content, migration cost using explicit operators is four times the cost of the split-step Fourier method, up to 260 times the cost of common-azimuth by GSP migration, and 25 times the cost of Kirchhoff migration. Our results show that in terms of image quality, shot-profile migration using explicit migration operators is well suited for imaging in areas with complex geology and significant velocity changes. However, computational cost of the method is high and makes it less attractive in terms of efficiency.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3