Affiliation:
1. The University of Texas at Austin, Bureau of Economic Geology, John A. and Katherine G. Jackson School of Geosciences, Austin, Texas 78713, USA.(corresponding author); .
Abstract
We have estimated migrated images with meaningful amplitudes matching least-squares migrated images by approximating the inverse Hessian using generative adversarial networks (GANs) in a conditional setting. We use the CycleGAN framework and extend it to the conditional CycleGAN such that the mapping from the migrated image to the true reflectivity is subjected to a velocity attribute condition. This algorithm is applied after migration and is computationally efficient. It produces results comparable to iterative inversion but at a significantly reduced cost. In numerical experiments with synthetic and field data sets, the adopted method improves image resolution, attenuates noise, reduces migration artifacts, and enhances reflection amplitudes. We train the network with three different data sets and test on three other data sets, which are not a part of training. Tests on validation data sets verify the effectiveness of the approach. In addition, the field-data example also highlights the effect of the bandwidth of the training data and the quality of the velocity model on the quality of the deep neural network output.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献