Automatic time-domain velocity estimation based on an accelerated clustering method

Author:

Zhang Peng1,Lu Wenkai1

Affiliation:

1. Tsinghua University, State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Beijing, China..

Abstract

Time-domain velocity and moveout parameters can be directly obtained from local event slopes, which are estimated on the prestack seismic gathers. In practice, there are always some errors in the estimated local slopes, especially in low signal-to-noise ratio (S/N) situations. Thus, subsurface velocity information may be hidden in the image domain spanned by velocity and other moveout parameters. We have developed an accelerated clustering algorithm to find cluster centers without prior information about the number of clusters. First, plane-wave destruction is implemented to estimate the local event slopes. For every sample in the seismic gathers, we obtain the estimations of velocity and its location in the image domain, according to the local event slopes. These mapped data points in the new domain exhibit the structure of groups. We represent these points by a mixture distribution model. Then, the cluster centers of the mixture distribution model are located, which correspond to maximum likelihood velocities of the main subsurface structures. Approximate velocity uncertainties bounds are used to select centers corresponding to reflections. Finally, interpolation is performed on the clustered unevenly sampled knot velocities to build the effective velocity model on regular grids. With synthetic and field data examples, we have determined that the proposed automatic velocity estimation method can give a stacking velocity model and a time migration velocity model with relatively high accuracy.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3