Automatic stack velocity picking using a semi‐supervised ensemble learning method

Author:

Wang Hongtao1ORCID,Zhang Jiangshe1,Zhang Chunxia1ORCID,Long Li1ORCID,Geng Weifeng2

Affiliation:

1. School of Mathematics and Statistics Xi'an Jiaotong University Xi'an Shaanxi People's Republic of China

2. Geophysical Technology Research Center of Bureau of Geophysical Prospecting Zhuozhou Hebei People's Republic of China

Abstract

AbstractPicking stack velocity from seismic velocity spectra is a fundamental method in seismic stack velocity analysis. With the increase in the scale of seismic data acquisition, manual picking cannot achieve the required efficiency. Therefore, an automatic picking algorithm is urgently needed now. Despite some supervised deep learning–based picking approaches that have been proposed, they heavily rely on sufficient training samples and lack interpretability. In contrast, utilizing physical knowledge to develop semi‐data‐driven methods has the potential to efficiently solve this problem. Thus, we propose a semi‐supervised ensemble learning method to reduce the reliance on manually labelled data and improve interpretability by incorporating the interval velocity constraint. Semi‐supervised ensemble learning fuses the information of the estimated spectrum, nearby velocity spectra and few‐shot manual picking to recognize the velocity picking. Test results of both the synthetic and field datasets indicate that semi‐supervised ensemble learning achieves more reliable and precise picking than traditional clustering‐based techniques and the currently popular convolutional neural network method.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3