Affiliation:
1. Formerly CGG, London, United Kingdom; presently Schlumberger Cambridge Research, High Cross, Madingley Rd., Cambridge CB3 0EL, United Kingdom.
Abstract
Seismic imaging processes are, in general, formulated under the assumption of a correct macrovelocity model. However, seismic subsurface images are very sensitive to the accuracy of the macrovelocity model. This paper investigates how the output of Kirchhoff inversion/migration changes for perturbations of a given 3‐D laterally inhomogeneous macrovelocity model. The displacement of a reflector image point from a perturbation of the given velocity model is determined in a first‐order approximation by the corresponding traveltime and slowness perturbations as well as the matrix. of the Beylkin determinant. The required traveltime derivatives can be calculated with ray perturbation theory.Using this result, a new, computationally efficient Kirchhoff inversion/migration technique is developed to predict in parallel a series of subsurface images for perturbations of a given macrovelocity model during a single inversion/migration process applied to the unmigrated seismic data. These images are constructed by superposition of the seismic data at predicted image point locations which lie on surfaces that expand from the initial image point as a function of the velocity perturbation. Because of the analogy to Huygens wavefronts in wave propagation, the technique is called Kirchhoff image propagation.A 2‐D implementation of Kirchhoff image propagation requires about 1.2 times the computation time of a single migration to calculate a set of propagated images. The propagated images provide good approximations to remigrated images and are applied to migration velocity analysis.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献