Affiliation:
1. Universidad Nacional de La Plata, Facultad de Ciencias Astronómicas y Geofísicas, La Plata, Argentina and CONICET, Buenos Aires, Argentina..
Abstract
We developed a new and simple method for denoising seismic data, which was inspired by data-driven empirical mode decomposition (EMD) algorithms. The method, which can be applied either as a trace-by-trace process or in the [Formula: see text] domain, replaces the use of the cubic interpolation scheme, which is required to calculate the mean envelopes of the signal and the residues, by window averaging. The resulting strategy is not viewed as an EMD per se, but a user-friendly version of EMD-based algorithms that permits us to attain, in a fraction of the time, the same level of noise cancellation as standard EMD implementations. Furthermore, the proposed method requires less user intervention and easily processes millions of traces in minutes rather than in hours as required by conventional EMD-based techniques on a standard PC. We compared the performance of the new method against standard EMD methods in terms of computational cost and signal preservation and applied them to denoise synthetic and field (microseismic and poststack) data containing random, erratic, and coherent noise. The corresponding [Formula: see text] EMDs implementations for lateral continuity enhancement were analyzed and compared against the classical [Formula: see text] deconvolution to test the method.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献