Robust reduced-rank filtering for erratic seismic noise attenuation

Author:

Chen Ke1,Sacchi Mauricio D.1

Affiliation:

1. University of Alberta, Department of Physics, Edmonton, Alberta, Canada..

Abstract

Singular spectrum analysis (SSA) or Cadzow reduced-rank filtering is an efficient method for random noise attenuation. SSA starts by embedding the seismic data into a Hankel matrix. Rank reduction of this Hankel matrix followed by antidiagonal averaging is utilized to estimate an enhanced seismic signal. Rank reduction is often implemented via the singular value decomposition (SVD). The SVD is a nonrobust matrix factorization technique that leads to suboptimal results when the seismic data are contaminated by erratic noise. The term erratic noise designates non-Gaussian noise that consists of large isolated events with known or unknown distribution. We adopted a robust low-rank factorization that permitted use of the SSA filter in situations in which the data were contaminated by erratic noise. In our robust SSA method, we replaced the quadratic error criterion function that yielded the truncated SVD solution by a bisquare function. The Hankel matrix was then approximated by the product of two lower dimensional factor matrices. The iteratively reweighed least-squares method was used to approximately solve for the optimal robust factorization. Our algorithm was tested with synthetic and real data. In our synthetic examples, the data were contaminated with band-limited Gaussian noise and erratic noise. Then, denoising was carried out by means of [Formula: see text] deconvolution, the classical SSA method, and the proposed robust SSA method. The [Formula: see text] deconvolution and the classical SSA method failed to properly eliminate the noise and to preserve the desired signal. On the other hand, the robust SSA method was found to be immune to erratic noise and was able to preserve the desired signal. We also tested the robust SSA method with a data set from the Western Canadian Sedimentary Basin. The results with this data set revealed improved denoising performance in portions of data contaminated with erratic noise.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3