Hybrid combination genetic algorithm and controlled gradient method to train a neural network

Author:

Kobrunov Alexander1,Priezzhev Ivan2

Affiliation:

1. Ukhta State Technical University, Ukhta, Russia..

2. Schlumberger, from December 2015 acting as independent consultant, Moscow, Russia..

Abstract

Multivariate predictive analysis is a widely used tool in the petroleum industry in situations in which the deterministic nature of the relationship between a variable that requires prediction and a variable that is used for the purposes of such prediction is unknown or very complex. For example, to perform a sweet-spot analysis, it is necessary to predict potential oil and gas production rates on a map, using various geologic and geophysical attribute maps (porosity, density, seismic attributes, gravity, magnetic, etc.) and the initial oil and gas production rates of several control or training wells located in the area of interest. We have developed a new technology that allows for building a stable nonlinear predictive operator by using the combination of a neural network, a genetic algorithm, and a controlled gradient method. The main idea behind the proposed technology is to combine stochastic and deterministic approaches during the construction of the predictive operator at the training stage. The proposed technology avoids many disadvantages of the genetic algorithm and gradients methods, such as a high level of dependency on the initial values; the phenomenon of over-fitting (overtraining), which results in creation of an operator with unstable predictability; and a low speed of decreasing error during iteration, and, as a result, a low level of prediction quality. However, the above-mentioned combination uses the advantages of both methods and allows for finding a solution significantly closer to a global minimum for the objective function, compared to simple gradient methods, such as back propagation. The combination of these methods together with Tikhonov regularization allows for building stable predictions in spatial or/and time coordinates.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3