Train Neural Networks with a Hybrid Method That Incorporates a Novel Simulated Annealing Procedure

Author:

Tsoulos Ioannis G.1ORCID,Charilogis Vasileios1,Tsalikakis Dimitrios2

Affiliation:

1. Department of Informatics and Telecommunications, University of Ioannina, 45110 Ioannina, Greece

2. Department of Engineering Informatics and Telecommunications, University of Western Macedonia, 50100 Kozani, Greece

Abstract

In this paper, an innovative hybrid technique is proposed for the efficient training of artificial neural networks, which are used both in class learning problems and in data fitting problems. This hybrid technique combines the well-tested technique of Genetic Algorithms with an innovative variant of Simulated Annealing, in order to achieve high learning rates for the neural networks. This variant was applied periodically to randomly selected chromosomes from the population of the Genetic Algorithm in order to reduce the training error associated with these chromosomes. The proposed method was tested on a wide series of classification and data fitting problems from the relevant literature and the results were compared against other methods. The comparison with other neural network training techniques as well as the statistical comparison revealed that the proposed method is significantly superior, as it managed to significantly reduce the neural network training error in the majority of the used datasets.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3