Inversion of fracture density from field seismic velocities using artificial neural networks

Author:

Boadu Fred K.1

Affiliation:

1. Department of Civil & Environmental Engineering, Duke University, 127B Hudson Hall, Box 90287, Durham, North Carolina 27708-0287.

Abstract

The inversion of fracture density from field measured P- and S-wave seismic velocities is performed using a neural network trained with an output from the modified displacement discontinuity fracture model. The basic idea is to use input‐output pairs generated by the fracture model to train the neural network. Once the neural network is trained, inversion of fracture density from field‐measured seismic velocities is performed very quickly. The overall performance of the neural network in the inversion process is assessed by means of a loss function. The results indicate that both sources of field information (P- and S-wave velocities) predict the field fracture density with reasonable accuracy. The performance of the neural network was compared to the prediction from least‐squares fitting. It is shown that the neural network out performs the least‐squares fitting in predicting the field‐fracture density values.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Reference24 articles.

1. Aki, K., and Richards, P. G., 1980, Quantitative seismology, theory and methods: W. H. Freeman & Co.

2. Interpretation of seismic data from hydraulic fracturing experiments at the Fenton Hill, New Mexico, hot dry rock geothermal site

3. Anderson, E. M., 1985, Electric transmission line fundamentals: Reston Publication Co.

4. Bishop, C. M., 1995, Neural networks for pattern recognition: Clarendon Press.

5. Boadu, F. K., 1994, Fractal characterization of fractures: Effect of fractures on seismic wave velocity and attenuation: Ph.D. thesis, Georgia Inst. Tech.

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3