Robust fracture intensity estimation from petrophysical logs and mud loss data: a multi-level ensemble modeling approach

Author:

Azadivash Ahmad,Soleymani Hosseinali,Seifirad Atrina,Sandani Amirali,Yahyaee Farshid,Kadkhodaie AliORCID

Abstract

AbstractThis study presents a pioneering machine learning approach to continuously model fracture intensity in hydrocarbon reservoirs using solely conventional well logs and mud loss data. While machine learning has previously been applied to predict discrete fracture properties, this is among the first attempts to leverage well logs for continuous fracture intensity modeling leveraging advanced ensemble techniques. A multi-level stacked ensemble methodology systematically combines the strengths of diverse algorithms like gradient boosting, random forest and XGBoost through a tiered approach, enhancing predictive performance beyond individual models. Nine base machine learning algorithms generate initial fracture intensity predictions which are combined through linear regression meta-models and further stacked using ridge regression into an integrated super-learner model. This approach achieves significant improvements over individual base models, with the super-learner attaining a mean absolute error of 0.083 and R^2 of 0.980 on test data. By quantifying the crucial fracture intensity parameter continuously as a function of depth, this data-driven methodology enables more accurate reservoir characterization compared to traditional methods. The ability to forecast fracture intensity solely from conventional well logs opens new opportunities for rapid, low-cost quantification of this parameter along new wells without requiring advanced logging tools. When incorporated into reservoir simulators, these machine learning fracture intensity models can help optimize production strategies and recovery management. This systematic stacked ensemble framework advances continuous fracture intensity modeling exclusively from well logs, overcoming limitations of prior techniques. Novel insights gained via rigorous model evaluation deepen the understanding of naturally fractured reservoirs.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3