Estimating a starting model for full-waveform inversion using a global optimization method

Author:

Datta Debanjan1,Sen Mrinal K.1

Affiliation:

1. University of Texas, Institute for Geophysics, Austin, Texas, USA..

Abstract

Full-waveform inversion (FWI) has become a popular method to estimate elastic earth properties from seismograms. It is formulated as a data-fitting least-squares minimization problem that iteratively updates an initial velocity model with the scaled gradient of the misfit until a satisfactory match between the real and synthetic data is obtained. However, such a local optimization approach can converge to a local minimum if the starting model used is not close enough to an optimal model. We have developed a two-step process in which we first estimate a starting model using a global optimization method. Unlike local optimization methods, a global optimization method starts with a random starting model and is not generally susceptible to be trapped in a local minimum. The starting model for FWI that we aim to estimate is sparsely parameterized and contains a set of interfaces and velocities that are used to represent the entire velocity model. We have obtained the depth of the interfaces and the velocities by minimizing the data misfit in the least-squares sense using a global optimization method called very fast simulated annealing (VFSA). Once the sparse velocity model was obtained from VFSA, we used that as a starting model in a conventional gradient-based FWI to obtain the final model. We have applied the proposed method to one synthetic data set and two field data sets from offshore India. The proposed method was able to estimate a velocity model that was not cycle skipped for realistic frequency bands. We have demonstrated that with the proper choice of model parameterization and optimization parameters, the global and gradient optimization algorithms converge in a finite number of iterations. We have determined that the resulting algorithm is computationally feasible in two dimensions and accurate for practical implementation of FWI.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3