A probabilistic full waveform inversion of surface waves

Author:

Berti Sean12ORCID,Aleardi Mattia1ORCID,Stucchi Eusebio1

Affiliation:

1. Earth Sciences Department University of Pisa Pisa Italy

2. Earth Sciences Department University of Florence Firenze Italy

Abstract

AbstractOver the past decades, surface wave methods have been routinely employed to retrieve the physical characteristics of the first tens of meters of the subsurface, particularly the shear wave velocity profiles. Traditional methods rely on the application of the multichannel analysis of surface waves to invert the fundamental and higher modes of Rayleigh waves. However, the limitations affecting this approach, such as the 1D model assumption and the high degree of subjectivity when extracting the dispersion curve, motivate us to apply the elastic full‐waveform inversion, which, despite its higher computational cost, enables leveraging the complete information embedded in the recorded seismograms. Standard approaches solve the full‐waveform inversion using gradient‐based algorithms minimizing an error function, commonly measuring the misfit between observed and predicted waveforms. However, these deterministic approaches lack proper uncertainty quantification and are susceptible to get trapped in some local minima of the error function. An alternative lies in a probabilistic framework, but, in this case, we need to deal with the huge computational effort characterizing the Bayesian approach when applied to non‐linear problems associated with expensive forward modelling and large model spaces. In this work, we present a gradient‐based Markov chain Monte Carlo full‐waveform inversion where we accelerate the sampling of the posterior distribution by compressing data and model spaces through the discrete cosine transform. Additionally, a proposal is defined as a local, Gaussian approximation of the target density, constructed using the local Hessian and gradient information of the log posterior. We first validate our method through a synthetic test where the velocity model features lateral and vertical velocity variations. Then we invert a real dataset from the InterPACIFIC project. The obtained results prove the efficiency of our proposed algorithm, which demonstrates to be robust against cycle‐skipping issues and able to provide reasonable uncertainty evaluations with an affordable computational cost.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3