ACCURACY OF FINITE‐DIFFERENCE MODELING OF THE ACOUSTIC WAVE EQUATION

Author:

Alford R. M.1,Kelly K. R.1,Boore D. M.2

Affiliation:

1. Amoco Production Co., Tulsa, Oklahoma 74102

2. Stanford University, Stanford, California 94305

Abstract

Recent interest in finite‐difference modeling of the wave equation has raised questions regarding the degree of match between finite‐difference solutions and solutions obtained by the more classical analytical approaches. This problem is studied by means of a comparison of seismograms computed for receivers located in the vicinity of a 90-degree wedge embedded in an infinite two‐dimensional acoustic medium. The calculations were carried out both by the finite‐difference method and by a more conventional eigenfunction expansion technique. The results indicate the solutions are in good agreement provided that the grid interval for the finite‐difference method is sufficiently small. If the grid is too coarse, the signals computed by the finite‐difference method become strongly dispersed, and agreement between the two methods rapidly deteriorates. This effect, known as “grid dispersion,” must be taken into account in order to avoid erroneous interpretation of seismograms obtained by finite‐difference techniques. Both second‐order accuracy and fourth‐order accuracy finite‐difference algorithms are considered. For the second‐order scheme, a good rule of thumb is that the ratio of the upper half‐power wavelength of the source to the grid interval should be of the order of ten or more. For the fourth‐order scheme, it is found that the grid can be twice as coarse (five or more grid points per upper half‐power wavelength) and good results are still obtained. Analytical predictions of the effect of grid dispersion are presented; these seem to be in agreement with the experimental results.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 616 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3