Improved adaptive regularization for simulated annealing inversion of transient electromagnetic

Author:

Tang Xiang,Liu Shangbin,Nian Xiaofei,Deng Shengqiang,Liu Yuchao,Ye Qiongyao,Li Yingjie,Li Yangyi,Yuan Tong,Sun Huaifeng

Abstract

AbstractGeophysical inversion usually involves ill-posed problem. Regularization is the most commonly used method to mitigate this problem. There are many regularization parameter selection methods, among which the adaptive regularization method can automatically update parameters during iteration, reducing the difficulty of parameter selection. Therefore, it is widely used in linear inversion. However, there are very few studies on the use of adaptive regularization methods in stochastic optimization algorithms. The biggest difficulty is that in stochastic optimization algorithms, the search direction of any iteration is completely random. Data fitting term and stabilizing term vary in a wide range, making it difficult for traditional methods to work. In this paper, we consider the contributions of the data fitting term and the stabilizing term in the objective function and give an improved adaptive regularization method for very fast simulated annealing (VFSA) inversion for transient electromagnetic (TEM) data. The optimized method adjusts the two terms dynamically to make them in balance. We have designed several numerical experiments, and the experimental results demonstrate that the method in this paper not only accelerates the convergence, but also the inversion results are very little affected by the initial regularization parameter. Finally, we apply this method to field data, and the inversion results show very good agreements with nearby borehole data.

Funder

Natural Science Foundation of Shandong Province

Key Technology Research and Development Program of Shandong Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3