1. Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, 2015, TensorFlow: Large-scale machine learning on heterogeneous systems (Software available from tensorflow.org).
2. Petrophysical-property estimation from seismic data using recurrent neural networks
3. Alfarraj, M., N. Keni, and G. AlRegib, 2018, Property prediction from seismic attributes using a boosted ensemble machine learning scheme: SBGf/SEG Machine Learning Workshop.
4. Reservoir characterization using seismic waveform and feedforword neural networks
5. Bahdanau, D., K. Cho, and Y. Bengio, 2014, Neural machine translation by jointly learning to align and translate: arXiv preprint arXiv:1409.0473.