Applications of deep neural networks in exploration seismology: A technical survey

Author:

Mousavi S. Mostafa1ORCID,Beroza Gregory C.2,Mukerji Tapan3ORCID,Rasht-Behesht Majid4ORCID

Affiliation:

1. Stanford University, Department of Geophysics, Stanford, California, USA. (corresponding author)

2. Stanford University, Department of Geophysics, Stanford, California, USA.

3. Stanford University, Department of Geophysics, Stanford, California, USA and Stanford University, Departments of Earth and Planetary Sciences, and Energy Science and Engineering, Stanford, California, USA.

4. Brown University, Department of Earth Environmental and Planetary Sciences, Providence, Rhode Island, USA.

Abstract

Exploration seismology uses reflected and refracted seismic waves, emitted from a controlled (active) source into the ground, and recorded by an array of seismic sensors (receivers) to image the subsurface geologic structures. These seismic images are the main resources for energy and resource exploration and scientific investigation of the crust and upper mantle. We survey recent advances in applications of machine-learning methods, more specifically deep neural networks (DNNs), in exploration seismology. We provide a technically oriented review of DNN applications for seismic data acquisition; data preprocessing tasks such as interpolation/extrapolation, denoising, first-break picking, velocity picking, and seismic migration; data processing tasks such as geologic and structural interpretations; and data modeling tasks such as the inference of subsurface structures and lithologic and petrophysical properties. DNNs have entered almost every sector of exploration seismology. They have outperformed many traditional algorithms for the automation of seismic data acquisition, data preprocessing, data processing, interpretations, and data modeling tasks. However, despite the impressive performances of DNN-based approaches, the out-of-distribution generalization and interpretability of these models remain challenging. To overcome these challenges, incorporating domain knowledge into the DNNs is a promising path and a focus of current deep-learning research in seismology.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3