A simplified Lax‐Wendroff correction for staggered‐grid FDTD modeling of electromagnetic wave propagation in frequency‐dependent media

Author:

Bergmann Tim1,Blanch Joakim O.2,Robertsson Johan O. A.1,Holliger Klaus1

Affiliation:

1. Swiss Federal Institute of Technology, Institute of Geophysics, ETH-Hönggerberg, CH-8093 Zürich, Switzerland. Emails:

2. Defense Research Establishment, Enköpingsvägen 126, 17290 Stockholm, Sweden.

Abstract

The Lax‐Wendroff correction is an elegant method for increasing the accuracy and computational efficiency of finite‐difference time‐domain (FDTD) solutions of hyperbolic problems. However, the conventional approach leads to implicit solutions for staggered‐grid FDTD approximations of Maxwell’s equations with frequency‐dependent constitutive parameters. To overcome this problem, we propose an approximation that only retains the purely acoustic, i.e., lossless, terms of the Lax‐Wendroff correction. This modified Lax‐Wendroff correction is applied to an O(2, 4) accurate staggered‐grid FDTD approximation of Maxwell’s equations in the radar frequency range (≈10 MHz–10 GHz). The resulting pseudo-O(4, 4) scheme is explicit and computationally efficient and exhibits all the major numerical characteristics of an O(4, 4) accurate FDTD scheme, even for strongly attenuating and dispersive media. The numerical properties of our approach are constrained by classical numerical dispersion and von Neumann‐Routh stability analyses, verified by comparisons with pertinent 1-D analytical solutions and illustrated through 2-D simulations in a variety of surficial materials. Compared to the O(2, 4) scheme, the pseudo-O(4, 4) scheme requires 64% fewer grid points in two dimensions and 78% in three dimensions to achieve the same level of numerical accuracy, which results in large savings in core memory.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Differential-Difference Equations with Optimal Parameters;Computational Mathematics and Mathematical Physics;2023-11

2. Finite Difference Schemes of 4th Order Approximation for Maxwell’s Equations;Numerical Analysis and Applications;2022-08-26

3. Ground Penetrating Radar System: Principles;Handbook of Cultural Heritage Analysis;2022

4. Difference Schemes Based on the Laguerre Transform;Computational Mathematics and Mathematical Physics;2021-03

5. Crosshole reflection imaging with ground-penetrating radar data: Applications in near-surface sedimentary settings;GEOPHYSICS;2020-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3