Finite‐difference modeling of electromagnetic wave propagation in dispersive and attenuating media

Author:

Bergmann Tim1,Robertsson Johan O. A.1,Holliger Klaus1

Affiliation:

1. Swiss Federal Institute of Technology, Institute of Geophysics, ETH-Hönggerberg, 8093 Zurich, Switzerland. Emails:

Abstract

Realistic modeling of electromagnetic wave propagation in the radar frequency band requires a full solution of Maxwell’s equations as well as an adequate description of the material properties. We present a finite‐difference time‐domain (FDTD) solution of Maxwell’s equations that allows accounting for the frequency dependence of the dielectric permittivity and electrical conductivity typical of many near‐surface materials. This algorithm is second‐order accurate in time and fourth‐order accurate in space, conditionally stable, and computationally only marginally more expensive than its standard equivalent without frequency‐dependent material properties. Empirical rules on spatial wavefield sampling are derived through systematic investigations of the influence of various parameter combinations on the numerical dispersion curves. Since this algorithm intrinsically models energy absorption, efficient absorbing boundaries are implemented by surrounding the computational domain by a thin (⩽2 dominant wavelengths) highly attenuating frame. The importance of accurate modeling in frequency‐dependent media is illustrated by applying this algorithm to two‐dimensional examples from archaeology and environmental geophysics.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3