Wave field extrapolation techniques in seismic migration, a tutorial

Author:

Berkhout A. J.1

Affiliation:

1. Technische Hogeschool Delft, Laboratorium voor Technische Natuurkunde, Postbus 5046, 2600 GA Delft, The Netherlands

Abstract

The objective of this paper is to provide a general view on methods of wave field extrapolation as used in seismic modeling and seismic migration, i.e., the Kirchhoff‐summation approach, the plane‐wave method (k–f method), and the finite‐difference technique. Particular emphasis is given to the relationship between the different methods. By formulating the problem in the space‐frequency domain (x, y, ω‐domain), a systems approach can be adopted which results in simple and concise expressions. These expressions clearly show that forward extrapolation is described by a spatial convolution procedure and inverse extrapolation is described by a spatial deconvolution procedure. In the situation of lateral velocity variations, the (de)convolution procedure becomes space‐variant. The space‐frequency domain is most suitable for recursive depth migration. In addition, frequency dependent properties such as absorption, dispersion, and spatial bandwidth can be handled easily. It is shown that all extrapolation methods are based on two equations: Taylor series and wave equation. In the Kirchhoff‐summation approach all terms of the Taylor series are summed to an exact analytical expression—the Kirchhoff‐integral for plane surfaces. It formulates the extrapolation procedure in terms of a spatial convolution integral which must be discretized in practical applications. The Fourier‐transformed version of the Kirchhoff‐integral is used in the plane wave method (k–f method). This actually means that spatial (de)convolution in the x, y, ω‐domain is translated into multiplication in the [Formula: see text], [Formula: see text], ω‐domain. Of course, this is not allowed if the extrapolation operators are space‐variant. In explicit finite‐difference techniques a truncated version of the Taylor series is used with some optimum adjustments of the coefficients. For only one or two terms in the Taylor series, a spatial low‐pass filter must be applied to compensate for the amplitude errors at high tilt angles. Explicit methods are simple and most suitable for three‐dimensional (3-D) applications. In implicit finite‐difference schemes the wave field extrapolator is written in terms of an explicit forward extrapolator and an explicit inverse extrapolator. Properly designed implicit schemes do not show amplitude errors and, therefore, amplitude correction filters need not be applied. In comparison with explicit schemes, implicit schemes are more sensitive to improper boundary conditions at both ends of the data file. It is shown that the forward seismic model can be elegantly described by a matrix equation, using separate operators for downward and upward traveling waves. Using this model, inverse extrapolation involves one matrix inversion procedure to compensate for the downward propagation effects and one matrix inversion procedure to conpensate for the upward propagation effects.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3