Downward continuation of marine seismic reflection data: an undervalued tool to improve velocity models

Author:

Jimenez-Tejero C E1ORCID,Ranero Cesar R12,Sallares Valenti1,Gras Claudia1

Affiliation:

1. Barcelona Center for Subsurface Imaging, Institute of Marine Sciences, CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain

2. Barcelona Center for Subsurface Imaging, Institute of Marine Sciences, CSIC, ICREA at CSIC, Pg. Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain

Abstract

SUMMARY The purpose of marine seismic experiments is to provide information of the structure and physical properties of the subsurface. The P-wave velocity distribution is the most commonly modelled property, usually by inversion of arrival times or waveform attributes. In wide-angle seismic reflection/refraction (WAS) experiments, arrival times of seismic phases identified in data recorded by ocean bottom seismometers (OBS) are used to image relatively deep structures. Most WAS experiments have relatively low redundancy and produce robust velocity models of limited resolution. The shallow subsurface is also commonly studied with multichannel seismic (MCS) data recorded by towed streamers, a technique that is highly complementary to WAS. In this case, the recording of refractions as first arrivals is limited primarily by the streamer length and by features like water depth and the velocity structure and, in general, most refractions are masked by reflections and noise. However, MCS data of variable quality are available in many regions where no other data exist and previous work has shown that these data can also be used to retrieve velocity models through traveltime and full waveform inversion provided that first arrival information is properly extracted from the record sections. The most widely used tool to extract refractions as first arrivals from MCS recordings is the so-called downward continuation technique, which is designed for redatuming streamer field data to the seafloor. In this new virtual configuration, the early refractions transform to seismic phases that are becoming visible as first arrivals from nearly zero offset, facilitating their identification and use in traveltime tomography. However, there is limited literature, let alone available codes, to be used with the available MCS data sets. This work presents a user-friendly open source HPC software for redatuming 2-D streamer field data to the sea bottom for any seafloor relief. The main ingredient is the acoustic wave equation used backwards in time, allowing first the redatuming of the receivers and then the redatuming of the sources. Assessment tools are provided to evaluate the information available after redatuming for specific data acquisition configurations. Also, we present a step-by-step analysis that defines the most important features that influence the quality of the virtual, redatumed recordings.

Funder

AEI

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3