Affiliation:
1. Institut Langevin ESPCI Paris PSL University CNRS Paris France
2. ISTerre Université Grenoble Alpes Maison des Géosciences Grenoble France
Abstract
AbstractImaging the structure of major fault zones is essential for our understanding of crustal deformations and their implications on seismic hazards. Investigating such complex regions presents several issues, including the variation of seismic velocity due to the diversity of geological units and the cumulative damage caused by earthquakes. Conventional migration techniques are in general strongly sensitive to the available velocity model. Here we apply a passive matrix imaging approach which is robust to the mismatch between this model and the real seismic velocity distribution. This method relies on the cross‐correlation of ambient noise recorded by a geophone array. The resulting set of impulse responses form a reflection matrix that contains all the information about the subsurface. In particular, the reflected body waves can be leveraged to: (a) determine the transmission matrix between the Earth's surface and any point in the subsurface; (b) build a confocal image of the subsurface reflectivity with a transverse resolution only limited by diffraction. As a study case, we consider seismic noise (0.1–0.5 Hz) recorded by the Dense Array for Northern Anatolia that consists of 73 stations deployed for 18 months in the region of the 1999 Izmit earthquake. Passive matrix imaging reveals the scattering structure of the crust and upper mantle around the North Anatolian Fault zone over a depth range of 60 km. The results show that most of the scattering is associated with the Northern branch that passes throughout the crust and penetrates into the upper mantle.
Funder
HORIZON EUROPE European Research Council
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics